Seismic Resiliency: Upgrading a Treated Water Reservoir and Transmission Pipelines for the Big One

Deborah Russell, P.E. – Kennedy/Jenks Consultants James Bowland, P.E. – Kennedy/Jenks Consultants

May 5, 2017

Kennedy/Jenks Consultants

Presentation Outline

- Overview of SFPUC's Water System Improvements Program (WSIP)
- Harry Tracy Water Treatment Plant (HTWTP) Long Term Improvements Project (LTIP)
 - Design
 - Construction
- Peninsula Pipeline Seismic Upgrades (PPSU) Project
 - Design
 - Construction

SFPUC Hetch Hetchy Water System

- 260 millions gallons per day
- To over 2.5 million Bay Area residents
- Travels 167 miles by gravity
- Crosses 3 faults

SFPUC Hetch Hetchy Water System

SPFUC's Water System Improvements Program (WSIP)

- \$4.8 billion water system improvement program, implemented in 2002
- WSIP Goals
 - Seismically protect the water system
 - Assure reliable and adequate supply in case of catastrophic event or drought conditions
- One of the largest infrastructure programs in the country

WSIP Seismic Design Criteria

BSE-2 (Basic Safety Earthquake-2) per ASCE 41

- 2,475 year return period earthquake
- 2% occurrence in 50 years
- Maximum Credible Earthquake of 7.9

Seismic Reliability:

- Transmission pipelines to provide service within 24 hours of a Maximum Credible Earthquake on San Andreas Fault
- Deliver 140 MGD within 24 hours after event

HARRY TRACY WATER TREATMENT PLANT LONG TERM IMPROVEMENTS PROJECT

Harry Tracy WTP Overview

- Built in 1972 and expanded in 1988, 1992 and 2011-2015
- Direct filtration plant
- Rated capacity: 140 MGD
 - Sustainable capacity: 90 MGD
 - Average Flow: 20 40 MGD
- Plant challenges
 - San Andreas Fault
 - Site limitations

Process Flow Diagram

HARRY TRACY WTP

Harry Tracy WTP Project Map

Earthwork Required to Support TWR

Soil Nail Retaining Wall

- Length: ~700 feet long
- Height: 20 to 65 feet tall
- Anchored by ~1,000 soil nails
- Nail length: 25 to 70 feet

Mechanically Stabilized Earth (MSE) Wall

- Two tiers upper & lower walls
- Precast concrete facing panels
 - 5' by 5' face area
 - Architectural detailing

11 MG TWR - Process Flow

11 MG TWR - Components

Piles, Pile Caps and Foundation

- 800+ Piles
 - HP-14 x 117
 - Depth: 12 to 61 feet
 - Depth to bedrock varies by 40' over

- Pile-caps to connect piles to floor slab
- Foundation
 - 2'-3" thick slab

11 MG TWR – Outer Wall

- Contain chlorine raceway contactor (3 MG)
- Strand-wound circular prestressed concrete wall
- Cast-in-place concrete core
 - 12" thick at top
 - 18" thick at bottom
- Vertical post-tensioning tendons
- Circular prestressed reinforcement
 - 4 layers of strands wrapped around wall base
 - 3/8" thick shotcrete layer between wraps

11 MG TWR – Inner Wall

- Contain operational storage reservoir (8 MG)
- Cast-in-place concrete wall
- No prestressed reinforcement

- Vertical post-tensioning tendons
- Tapered wall
 - 12" thick at top
 - 34" thick at bottom

11 MG TWR - Wall Connections

- Connections to floor slab and roof slab
 - Designed as unrestrained conditions
 - Allows tank to expand and contract when filling or draining the tank
 - Seismic cable connectio
 Transfer seismic load of wall to foundation
 Prevents sliding of tank off foundation

H-PILF

11 MG TWR - Roof and Columns

- Roof designed as two-way slab
 - Rebar resists bending stresses in each directions
 - Reduces thickness of concrete

- 88 columns
- 30" diameter

Project Completed in April 2015!

PENINSULA PIPELINE SEISMIC UPGRADES PROJECT

Peninsula Pipeline Seismic Upgrades Overview

- Transmission pipelines from HTWTP
 - San Andreas Pipeline No. 2 (SAPL2)
 - San Andreas Pipeline No. 3 (SAPL3)
 - Sunset Branch Pipeline (SSBPL)
- Cross the Serra Fault
- Traverse areas of potential liquefaction in the Colma Valley

PPSU Project Map

PPSU Project Description

Millbrae Site

- Replacement of approximately 900 feet of SSBPL at the Serra Fault Crossing
- San Bruno South Site
 - Replacement of approximately 1,120 feet of SAPL2 and approximately 990 feet of SAPL3 at the Serra Fault Crossing
- San Bruno North Site
 - Structural support of SAPL2 within an existing concrete box tunnel

PPSU Project Description, Cont.

South San Francisco Site

- Replacement of 665 feet of SAPL 2 located in the Colma Valley liquefaction zones
- Colma Site
 - Replacement of approximately 685 feet located in the Colma Valley liquefaction zones

Serra Fault Hazard Zones

Seismic hazard zones

- Serra Fault primary rupture hazard zone
- Serra Fault secondary deformation hazard zone

Basis of Design

- Hazard zones and geotechnical parameters determined design requirements
 - Pipe thickness
 - Connection welds
 - Specialized trench backfill material
- Finite element modeling was performed using ABAQUS
 - Confirm the design will perform as expected under a seismic event

PPSU Design Concepts: Strengthen Pipes

- Steel pipe thicknesses between 5/8 and 1-1/4 inch thick
- Butt-welded joints between pipe segments
- Butt strap connections encased in concrete between new and existing pipes
- Reinforced concrete-encased miter bends with welded 'shear studs'

PPSU Design Concepts: Flexible Trench Backfill Material

- Provide flexibility for pipe movement within trench
- Unconventional trench materials
 - Gravel
 - Expanded polystyrene geofoam (EPS foam)
 - Cellular concrete
 - Light weight aggregate
- Polyurethane lined and coated
- Multiple trench section designs
 - Dependent on hazard zones

Trench Section in Secondary Deformation Hazard Zone

Trench Backfill

- Select native
- Class 1 permeable material
- Class 2 aggregate base

- Pipe Bedding
 - Sand
 - Controlled Density Fill (CDF)
 - Class 1 permeable material

Trench Sections in Primary Rupture Hazard Zone

Trench Sections in Primary Rupture Hazard Zone, Cont.

Construction Challenges

- 1. Pipeline alignment
- 2. Erosion control/Inclement weather
- 3. Unconventional backfill materials

Construction Challenge 1: Alignment Millbrae Site

Residential Area

Construction Challenge 1: Alignment San Bruno South Site

Construction Challenge 1: Alignment, Cont.

Construction Challenge 2: Erosion Control/Inclement Weather, cont.

Construction Challenge 2: Erosion Control/Inclement Weather, cont.

Construction Challenge 3: Unconventional Materials - EPS Foam

- Expanded polystyrene geofoam (EPS foam)
 - Cut material on site to required dimensions
 - Limit weight on foam

Construction Challenge 3: Unconventional Materials - EPS Foam, Cont.

Construction Challenge 3: Unconventional Materials - Lightweight Aggregate

Light weight aggregate

- No appropriate ASTM standard for in-situ compaction testing
- Concern for settlement of parking lot/road

Construction Challenge 3: Unconventional Material - Cellular Concrete

Cellular Concrete

- Difficulties meeting low strength requirements
- Optimized strength/weight ratio

Questions?

Deborah C. Russell, P.E. - Kennedy/Jenks Consum. DeborahRussell@KennedyJenks.com (415) 243-2528

James Bowland, P.E. - Kennedy/Jenks Consultants JamesBowland@KennedyJenks.com (406) 578-4501

Kennedy/Jenks Consultants